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Abstract

In this paper, a micropump actuated by electrostatic forces is dynamically analyzed. Coupled electro-
mechanical effects are considered in the evaluation of the performance of the electrostatic micropump. The
boundary element method is employed here to solve the quasi 3-D Laplace equation that the potential
difference satisfies in order to obtain the surface charge density and corresponding electrostatic force. First
order shear deformation theory is used to model the electrode membrane of the pump. Geometric non-
linearity arises due to the inclusion of von Karman strains. The finite element method is employed to
discretize the governing equations and Newton’s iteration method is employed to solve the discretized
equations. With the electro-mechanical coupling effects considered within the framework of linear plate
theory, i.e., ignoring the von Karman strains, similar response trends are obtained for the 2-D plate analysis
as that of 1-D analysis found in open literature. The present study is extended to non-linear analysis with
von Karman strains included and non-linear load–deflection relationship is demonstrated. Variation of the
amplitude and frequency of the potential difference applied across the two electrodes are investigated and
responses are compared with those of linear analysis. Qualitatively different responses are observed. Also,
the effects of the length-to-thickness ratio of the electrode plate are examined in detail.
r 2003 Published by Elsevier Ltd.
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1. Introduction

Based on the actuation working principles, micropumps can be classified under a host of effects
such as electromagnetic, electrostatic, piezoelectric, shape memory, etc. In the development of
micropumps, it is essential to predict the performance of the micropump before the prototype is
fabricated not only to save cost, but to have a better understanding of the working concepts and
an idea of where potential pitfalls may occur.

Electrostatic micropumps has attracted attention in recent years since electrostatic actuators
can easily be miniaturized and the electrostatic force between two capacitor plates depends upon
only a few parameters such as the applied voltage, the dielectric media and the distance between
the plates [1]. When a potential difference is applied across a capacitor, charges are induced on the
plates of the capacitor and electrostatic forces are generated. If one plate is flexible enough to
deform, the distribution of the charges on this plate varies and electrostatic force changes
correspondingly with further deformation of the plate inducing charge redistribution on the
surface of the plate. In the design and modelling of the electrostatic micropumps, this electro-
mechanical coupling effect must be taken into consideration. To study this electro-mechanical
coupling effect, the boundary element method (BEM) is often employed to evaluate the
charge density and corresponding electrostatic force. The BEM was used in combination with the
finite element method (FEM) to solve this coupled problem [2,3]. Currently, 1-D and 2-D static as
well as 1-D dynamic problems have been studied in the literature [2,3]. When the transverse
deflection of a plate structure exceeds half its thickness, geometric non-linear effects become
significant [4]. In micropumps, the movable electrode plate membrane may experience large
deformation and the non-linear effects cannot be neglected. The use of first order shear
deformation theory (FSDT) for linear and non-linear analysis of plates can be respectively found
in the literature [5,6].

In this paper, we examine the 2-D non-linear dynamic analysis of an electrostatic micropump.
The geometric non-linear effect is taken into account by the introduction of von Karman strains.
The BEM is used to solve the Laplace equation that evaluates the charge redistribution and the
FEM is employed to solve the non-linear governing equations of motion of the electrode plate
membrane. For a 1-D microtweezer, the effects of the frequency of the driving voltage has been
studied [2]. It was found that when the driving frequency is close to half the first natural
frequency, the microtweezer goes to a resonant vibration state. Here, the 2-D electrode plate is
initially studied based via linear first order shear deformation plate theory as a first step in the
simulation process. This is then extended to analysis based on von Karman type geometrically
non-linear strain–displacement relationships. The amplitudes and frequencies of the driving
voltage are varied and response trends are compared with that of linear analysis for qualitative
changes. Finally, the effects of length-to-thickness ratio on the non-linear responses are
investigated.

2. Dynamic FEM plate model for the micropump based on FSDT

The electrostatic micropump considered here is as shown in Fig. 1. Electrode 2 is fixed. As
voltage is applied across the electrodes, the thin diaphragm electrode 1 deforms toward its

ARTICLE IN PRESS

T.Y. Ng et al. / Journal of Sound and Vibration 273 (2004) 989–1006990



counterpart electrode 2, which induces bigger volume of the pump container and fluid is thus
sucked into the pump chamber. As voltage is released the diaphragm electrode 1 returns so as to
squeeze the fluid out. Electrode 1 is the object to be studied and it can be simplified as a four-edge
clamped thin plate.

The displacement field based on first order shear deformation plate theory is

uðx; y; z; tÞ ¼ u0ðx; y; z; tÞ þ zfxðx; y; tÞ; vðx; y; z; tÞ ¼ v0ðx; y; z; tÞ þ zfyðx; y; tÞ

wðx; y; z; tÞ ¼ w0ðx; y; z; tÞ; ð1Þ

where u; v;w are displacements in the x; y; z directions, respectively, fx;fy are the rotations of a
transverse normal about the x and y axes, respectively. u0; v0;w0 are the midplane displacements in
the x; y; z directions, respectively. The rotations can be defined as

fx ¼
@u

@z
; fy ¼

@v

@z
: ð2Þ

Electrode 1 can be simplified as a four edge clamped plate. From first order plate theory, the
governing equations can be written as

0 ¼
Z T

0

Z
O0

Nxxdeð0Þxx þ Mxxdeð1Þxx þ Nyydeð0Þyy þ Myydeð1Þyy þ Nxydgð0Þxy þ Mxydgð1Þxy

þ Qxdgð0Þxz þ Qydgð0Þyz � f dw0 � I0ð ’u0d ’u0 þ ’v0d’v0 þ ’w0d ’w0Þ

� I1ð ’fxd ’u0 þ ’fyd’v0 þ d ’fx ’u0 þ d ’fy ’v0Þ � I2ð ’fxd ’fx þ ’fyd ’fyÞ

2
664

3
775dx dy

8>><
>>:

9>>=
>>;dt; ð3Þ

where f is the uniformly distributed electrostatic load. The plate constitutive equations for the
first order theories are

Nxx

Nyy

Nxy

8><
>:

9>=
>; ¼

A11 uA12 0

uA12 A22 0

0 0
1 � u

2
A66

2
6664

3
7775

eð0Þxx

eð0Þyy

gð0Þxy

8>><
>>:

9>>=
>>;; ð4Þ
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Fig. 1. Schematic of the electrostatic micropump.
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Mxx

Myy

Mxy

8><
>:

9>=
>; ¼

D11 uD12 0

uD12 D22 0

0 0
1 � u

2
D66

2
6664

3
7775

eð1Þxx

eð1Þyy

gð1Þxy

8>><
>>:

9>>=
>>;; ð5Þ

Qy

Qx

( )
¼ K

1� u
2

A44 0

0 A55

" #
gð0Þyz

gð0Þxz

( )
; ð6Þ

where K is the shear correction factor. For an isotropic material with Young’s modulus E and the
Poisson ratio u;

A11 ¼
Eh

1 � u2
; A12 ¼ uA11; A22 ¼ A11;

A66 ¼
1 � u

2
A11; A44 ¼ A55 ¼

1� u
2

KA11;

D11 ¼
Eh3

12ð1� u2Þ
; D12 ¼ uD11; D22 ¼ uD11; D66 ¼

1 � u
2

D11; ð7Þ

Ii ¼ b

Z h=2

�h=2
rzi dz ði ¼ 0; 1; 2Þ; ð8Þ
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Fig. 2. (a) Boundary elements in electric field. (b) Electrode 1 and corresponding co-ordinate system.
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where r is the density of the plate, a the length, b the width and h the thickness of the plate, see
Fig. 2b. The von Karman strain–displacement relations are

exx

eyy

gyz

gxz

gxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

eð0Þxx

eð0Þyy

gð0Þyz

gð0Þxz

gð0Þxy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

þ z

eð1Þxx

eð1Þyy

gð1Þyz

gð1Þxz

gð1Þxy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

@u0

@x
þ

1

2

@w0

@x

� �2

@v0

@y
þ

1

2

@w0

@y

� �2

@w0

@y
þ fy

@w0

@x
þ fx

@u0

@y
þ

@v0

@x
þ

@w0

@x

@w0

@y

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

þ z

@fx

@x
@fy

@y

0

0

@fx

@y
þ

@fy

@x

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: ð9Þ

From Eq. (3), the Euler–Lagrange equations are obtained by setting the coefficients of
du0; dv0; dw0; dfx; dfy in O0 to zero separately:

du0 :
@Nxx

@x
þ
@Nxy

@y
¼ I0

@2u0

@t2
þ I1

@2fx

@t2
;

dv0 :
@Nxy

@x
þ

@Nyy

@y
¼ I0

@2v0

@t2
þ I1

@2fy

@t2
;

dw0 :
@Qx

@x
þ

@Qy

@y
þ Nðw0Þ þ f ¼ I0

@2w0

@t2
;

@fx :
@Mxx

@x
þ

@Mxy

@y
� Qx ¼ I2

@2fx

@t2
þ I1

@2u0

@t2
;

@fy :
@Mxy

@x
þ

@Myy

@y
� Qy ¼ I2

@2fy

@t2
þ I1

@2v0

@t2
; ð10Þ

with

Nðw0Þ ¼
@

@x
Nxx

@w0

@x
þ Nxy

@w0

@y

� �
þ

@

@y
Nxy

@w0

@x
þ Nyy

@w0

@y

� �
: ð11Þ

The weak forms the five equations in Eq. (10) are obtained by multiplying them with
du0; dv0; dw0; dfx; dfy respectively, and integrating over the element domain

0 ¼
Z
Oe

@du0

@x
Nxx þ

@du0

@y
Nxy þ I0du0

@2u0

@t2
þ I1du0

@2fx

@t2

� �
dx dy

�
I
Ge

Pxdu0 ds; ð12aÞ
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0 ¼
Z
Oe

@dv0

@x
Nxy þ

@dv0

@y
Nyy þ I0dv0

@2v0

@t2
þ I1du0

@2fx

@t2

� �
dx dy

�
I
Ge

Pydv0 ds; ð12bÞ

0 ¼
Z
Oe

@dw0

@x
Qx þ

@dw0

@y
Qy � dw0 f þ I0dw0

@2w0

@t2

� �
dx dy

�
I
Ge

½Qxnx þ Qyny�dw0 ds; ð12cÞ

0 ¼
Z
Oe

@dfx

@x
Mxx þ

@dfx

@y
Mxy þ dfxQx þ I2dfx

@2fx

@t2
þ I1dfx

@2u0

@t2

� �
dx dy

�
I
Ge

Txdfxds; ð12dÞ

0 ¼
Z
Oe

@dfy

@x
Mxy þ

@dfy

@y
Myy þ dfyQy þ I2dfy

@2fy

@t2
þ I1dfy

@2v0

@t2

 !
dx dy

�
I
Ge

Tydfyds ð12eÞ

in which

Px � Nxxnx þ Nxyny; Py � Nxynx þ Nyyny; Tx � Mxxnx þ Mxyny;

Ty � Mxynx þ Myyny; Qn � Qxnx þ Qyny: ð12fÞ

The dependent variables u0; v0;w0;fx;fy can be approximated using the Lagrange interpolation
functions, i.e.,

u0ðx; y; tÞ ¼
Xm

j¼1

ujðtÞc
e
j ðx; yÞ; v0ðx; y; tÞ ¼

Xm

j¼1

vjðtÞc
e
j ðx; yÞ;

w0ðx; y; tÞ ¼
Xn

j¼1

wjðtÞc
e
j ðx; yÞ; fxðx; y; tÞ ¼

Xp

j¼1

S1
j ðtÞc

e
j ðx; yÞ;

fyðx; y; tÞ ¼
Xp

j¼1

S2
j ðtÞc

e
j ðx; yÞ; ð12gÞ

where ce
j are the Lagrange interpolation functions.
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The quadratic Lagrange interpolation functions of rectangular elements in terms of the element
co-ordinates ðx; ZÞ are

ce
1

ce
2

ce
3

ce
4

ce
5

ce
6

ce
7

ce
8

ce
9

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼
1

4

ð1� xÞð1 � ZÞð�x� Z� 1Þ þ ð1� x2Þð1� Z2Þ

ð1 þ xÞð1� ZÞðx� Z� 1Þ þ ð1� x2Þð1 � Z2Þ

ð1 þ xÞð1þ ZÞðxþ Z� 1Þ þ ð1� x2Þð1 � Z2Þ

ð1� xÞð1 þ ZÞð�xþ Z� 1Þ þ ð1� x2Þð1� Z2Þ

2ð1 � x2Þð1� ZÞ � ð1 � x2Þð1� Z2Þ

2ð1 þ xÞð1� Z2Þ � ð1 � x2Þð1� Z2Þ

2ð1 � x2Þð1þ ZÞ � ð1 � x2Þð1� Z2Þ

2ð1 � xÞð1� Z2Þ � ð1 � x2Þð1� Z2Þ

4ð1 � x2Þð1� Z2Þ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

: ð12hÞ

Substituting Eq. (12g) for u0; v0;w0;fx;fy into the weak forms in Eqs. (12a)–(12e), we obtain the
semi-discrete finite element model of the first order theory as

½K11� ½K12� ½K13� ½K14� ½K15�

½K12�T ½K22� ½K23� ½K24� ½K25�

½K13�T ½K23�T ½K33� ½K34� ½K35�

½K14�T ½K24�T ½K34�T ½K44� ½K45�

½K15�T ½K25�T ½K35�T ½K45�T ½K55�

2
66666664

3
77777775

fueg

fveg

fweg

fS1g

fS2g

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ

I0½M� ½0� ½0� I1½M� ½0�

½0� I0½M� ½0� ½0� I1½M�

½0� ½0� I0½M� ½0� ½0�

I1½M� ½0� ½0� I2½M� ½0�

½0� I1½M� ½0� ½0� I2½M�

2
6666664

3
7777775

f .ueg

f.veg

f .weg

f .S1g

f .S2g

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

fF1g

fF2g

fF3g

fF4g

fF5g

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð12iÞ

or

½Ke�fDeg þ ½Me�f .Deg ¼ fFeg: ð12jÞ

ARTICLE IN PRESS

T.Y. Ng et al. / Journal of Sound and Vibration 273 (2004) 989–1006 995



For the linear case, which means that the von Karman strains are not included, the coefficients of
the submatrices ½Kab� and ½Mab� and vectors fFag are defined for ða;b ¼ 1; 2;y; 5Þ by the
expressions

K1a
ij ¼

Z
Oe

@ce
i

@x
Na

1j þ
@ce

i

@y
Na

6j

� �
dx dy;

K2a
ij ¼

Z
Oe

@ce
i

@x
Na

6j þ
@ce

i

@y
Na

2j

� �
dx dy;

K3a
ij ¼

Z
Oe

@ce
i

@x
Qa

1j þ
@ce

i

@y
Qa

2j

� �
dx dy;

K4a
ij ¼

Z
Oe

@ce
i

@x
Ma

1j þ
@ce

i

@y
Ma

6j þ ce
i Q

a
1j

� �
dx dy;

K5a
ij ¼

Z
Oe

@ce
i

@x
Ma

6j þ
@ce

i

@y
Ma

2j þ ce
i Q

a
2j

� �
dx dy;

Mij ¼
Z
Oe

ce
ic

e
j dx dy: ð12kÞ

The coefficients Na
Ij; Ma

Ij; and Qa
Ij for a ¼ 1; 2;y; 5 and I ¼ 1; 2; 6 are given by

N1
1j ¼ A11

@ce
j

@x
; N2

1j ¼ A12

@ce
j

@y
; N4

1j ¼ 0;

N5
1j ¼ 0; N1

2j ¼ A12

@ce
j

@x
; N2

2j ¼ A22

@ce
j

@y
;

N4
2j ¼ 0; N5

2j ¼ 0; N1
6j ¼ A66

@ce
j

@y
;

N2
6j ¼ A66

@ce
j

@x
; N4

6j ¼ 0; N5
6j ¼ 0;

M1
1j ¼ 0; M2

1j ¼ 0; M4
1j ¼ D11

@ce
j

@x
;

M5
1j ¼ D12

@ce
j

@y
; M1

2j ¼ 0; M2
2j ¼ 0;

M4
2j ¼ D12

@ce
j

@x
; M5

2j ¼ D22

@ce
j

@y
; M1

6j ¼ 0;

M2
6j ¼ 0; M4

6j ¼ D66

@ce
j

@y
; M5

6j ¼ D66

@ce
j

@x
;

N3
1j ¼ 0; N3

2j ¼ 0; N3
6j ¼ 0;

M3
1j ¼ 0; M3

2j ¼ 0; M3
6j ¼ 0;

Q3
1j ¼ 0; Q3

2j ¼ 0; ð12lÞ
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F1
i ¼

I
Ge

Pxc
e
i dx dy; F2

i ¼
I
Ge

Pyc
e
i dx dy;

F3
i ¼

I
Ge

fce
i dx dy þ

I
Ge

Qnc
e
i ds;

F4
i ¼

I
Ge

Txc
e
i dx dy; F5

i ¼
I
Ge

Tyc
e
i dx dy: ð12mÞ

Finite element model is established with nine-node quadratic element. If the von Karman strains
are to be included in the finite element model, the following non-linear equation could be obtained
[7]:

½Ke�f %Deg þ ½Me�f .%Deg ¼ fFeg; ð13aÞ

where ½Me� is the mass matrix of element for the first order shear deformation plate theory defined
in Eq. (12k) and ½Ke� is the stiffness matrix of element including geometric non-linear effect. The
additional stiffness coefficients ½ %Ka3� ða ¼ 1; 2; 3Þ; which are defined by Eq. (13b), are to be added
to the corresponding linear coefficients defined in Eq. (12k) so as to form the stiffness matrix ½Ke�
for the non-linear case

%K13
ij ¼

1

2

Z
Oe

@ci

@x
%N1j þ

@ci

@y
%N6j

� �
dx dy; %K23

ij ¼
1

2

Z
Oe

@ci

@x
%N6j þ

@ci

@y
%N2j

� �
dx dy;

%K31
ij ¼

Z
Oe

%N1i

@cj

@x
þ %N6i

@cj

@y

� �
dx dy ¼ 2 %K13

ji ; %K32
ij ¼

Z
Oe

%N6i

@cj

@x
þ %N2i

@cj

@y

� �
dx dy ¼ 2 %K23

ji ;

%K33
ij ¼

Z
Oe

@ci

@x
%N1

@cj

@x
þ %N6

@cj

@y

� �
þ

@ci

@y
%N6

@cj

@x
þ %N2

@cj

@y

� �� �
dx dy; ð13bÞ

%Nbj ¼ Ab1
@w0

@x

@cj

@x
þ Ab2

@w0

@y

@cj

@y
þ Ab6

@w0

@x

@cj

@y
þ

@w0

@y

@cj

@x

� �
;

%Nb ¼
1

2
A1b

@w0

@x

� �2

þA2b
@w0

@y

� �2

þ2A6b
@w0

@x

@w0

@y

" #
ðb ¼ 1; 2; 6Þ ð13cÞ

in which, A16 ¼ A26 ¼ A61 ¼ A62 ¼ 0; for an isotropic material. It should be noted that the
stiffness matrix ½Ke� is not symmetric for the non-linear case because %K3a

ij ¼ 2 %Ka3
ii ; a ¼ 1; 2:

The fully discretized equations are given by

½ #Keð %DeÞ�sþ1f %D
egsþ1 ¼ f #Feg ð13dÞ

and following Newmark time discretization [7]

I #Kemsþ1 ¼ ½Ke�sþ1 þ F½Me�sþ1;

f #Feg ¼ fFegsþ1 þ ½Me�sþ1f
.*Deg; ð13eÞ
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where F ¼ 2=CðDtsÞ
2 with Dts ¼ tsþ1 � ts being the s time step and C is an integration parameter

constant defined by the scheme used.

3. Charge density and electrostatic force

As a voltage is applied onto the undeformed conductive plates, electrical charges are induced on
the surface of the plate, and these charges induce surface normal pressures which constitute the
electrostatic load p: In this work, electric stray field and corner effects will not been considered. As
one electrode plate is flexible enough to deform under this electrostatic load, the deformed plate
induces redistribution of surface charges on it and further deformation of this plate. This
electromechancial coupling effect can be illustrated as

fðx; y; zðwðx; y; tÞÞÞ - qðx; y; zðwðx; y; tÞÞÞ

m k

wðx; y; tÞ ’ pðx; y; zðwðx; y; tÞÞÞ

where f is the electrostatic potential, q the surface charge density, p the electrostatic load and w

the transverse deflection at point ðx; y; zÞ:
The electrostatic load can be calculated by

pðx; yÞ ¼ �
1

2

q2ðx; y; zðwÞÞ
e

n; ð14aÞ

where n is the inward normal to the conductor, e is the dielectric constant of the medium in which
the plate is placed and the charges distributed on the plate surface satisfy [8]

qðx; yÞ ¼ e
@fðx; y; zðwÞÞ

@n
: ð14bÞ

The electrostatic potential f; in the region exterior to the conductor, satisfies Laplace’s equation

@2f
@x2

þ
@2f
@y2

þ
@2f

@ðzðwÞÞ2
¼ 0: ð14cÞ

Eq. (14c) is solved using the Galerkin-based boundary element method. The electric field and
boundary elements is illustrated in Fig. 2a. There are mixed boundary conditions. The potential of
the top surface (electrode 2) is taken to be zero, and the potential of the bottom plate (electrode 1)
is the applied voltage. The potential gradient of all the other four side surfaces are zero.

4. Solution of dynamical equations

In this work, for the coupled mechanical and electrostatic field analysis, a weak coupling
approach has been employed, whereby the computational mechanical and electrostatic analyses
are run alternately and the effects from one is incorporated into the other repeatedly and
sequentially. This weak coupling is conducted after the dynamic evolution, as opposed to the
strong iteration method which provides for coupling during the dynamic step. The non-linear
algebraic equations (13d) are solved by Newton’s iterative method. The Newton’s iterative
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method is based on the tangent stiffness matrix, which is symmetric for all structural problems.
Suppose that the solution at the ith iteration, fDgi; is known, then let

fRg � ½ #K�fDg � f #Fg ¼ 0 ð15aÞ

and the solution at the ði þ 1Þth iteration is given by

fDgiþ1 ¼ fDgi þ fdDg; ð15bÞ

where fdDg is the solution increment and we have

fdDg ¼ �ð½ #KðfDgiÞ�tanÞ�1fRgi ¼ ð½ #KðfDgiÞ�tanÞ�1ðf #Fg � ½ #KðfDgiÞ�fDgiÞ; ð15cÞ

where ½ #KðfDgiÞ�tan is the tangent stiffness matrix and can be obtained as

½ #KðfDgiÞ�tan �
@fRg
@fDg

� �
evaluated at fDg ¼ fDgi: ð15dÞ

The iteration process is continued by solving Eq. (15c) until the convergence criteria of Eq. (15e) is
satisfied. The error criterion [7] is of the formffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

I¼1 jD
iþ1
I � Di

I j
2PN

I¼1jD
iþ1
I j2

s
oerr ðsay 10�3Þ; ð15eÞ

where N is the total number of nodal generalized displacements in the finite element mesh, and err

is the error tolerance.

5. Simulation results

For the plate membrane, i.e., electrode 1 of Fig. 1, its dimensions are taken to be 1000 mm �
1000 mm � 50 mm and the distance between the two electrodes is 750 mm; unless otherwise
explicitly defined. The material properties are that of aluminum with Young’s modulus E ¼
70 GPa; density r ¼ 2600 kg=m3 and the Poisson ratio u ¼ 0:25:

5.1. Non-linear load–deflection relationship

The response of the plate under uniformly distributed load is studied examined here and Fig. 3
shows the load–deflection curve. The geometric non-linearity is included by introducing the von
Karman strain–displacement relations resulting in the clearly non-linear load–deflection profile.

5.2. Effects of driving frequency—linear plate analysis

Based on linear plate analysis, the first natural frequency of the plate is found to be o1 ¼
2:7� 106 rad=s: Fig. 4(a) shows the dynamic responses of the plate driven by voltages of V ¼
4:0 sinð62:8tÞV=8:0 sinð62:8tÞV : It is observed that a stable response is obtained even though the
driving frequency is as low as 10 Hz: Fig. 4(b) is the dynamic response of the plate driven by
voltages of V ¼ 4:0 sinðo1tÞV=8:0 sinðo1tÞV : It can be seen that as the plate is excited by a
harmonic wave with a frequency equal to the first natural frequency of the plate, the plate has
stable dynamic response. This is because the force is in effect proportional to the square of V ; and
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the frequency of the dynamic response is thus expected to be twice that of the frequency of the
applied voltage.

Fig. 4(c) shows the dynamic response of the plate driven by voltages of V ¼
4:0 sinðo1t=2ÞV=8:0 sinðo1t=2ÞV : It is observed that as the driving frequency is equal to half of
the fundamental frequency of the plate, the plate goes into a resonant state. This trend for the 2-D
linear plate analysis is similar to that observed by Shi et al. [2] in a 1-D analysis of a microtweezer.
Figs. 4(d) and 4(e) are the dynamic responses of the plate driven by the voltages of V ¼
4:0 sinð0:95o1tÞV=8:0 sinð0:95o1tÞV and V ¼ 4:0 sinð1:05o1tÞV=8:0 sinð1:05o1tÞV ; respectively. It
can be seen that when the driving frequencies are close to half of the fundamental frequency of the
plate, the dynamic responses have especially large amplitudes. This is again in line with the
observations of Shi et al. [2] for a 1-D analysis of a microtweezer. Fig. 4(f) presents the dynamic
response of the plate driven by voltages of V ¼ 4:0 sinð1:5o1tÞV=8:0 sinð1:5o1tÞV : It is noted that
a stable response is obtained as the driving frequency is sufficiently clear of half of the
fundamental frequency of the plate.

5.3. Effects of driving frequency—non-linear plate analysis

Fig. 5 presents the corresponding results via non-linear plate analysis of the results presented in
Fig. 4. Figs. 5(a) and 5(b) show the dynamic responses of the plate membrane excited by voltages
of V ¼ 4:0 sinð62:8tÞV=8:0 sinð62:8tÞV and V ¼ 4:0 sinðo1tÞV=8:0 sinðo1tÞV ; respectively. Com-
paring this with corresponding results of Figs. 4(a) and (b), it is observed the response amplitudes
when using non-linear analysis are lower. In Fig. 5(c), where the plate is driven by voltages of
V ¼ 4:0 sinðo1t=2ÞV=8:0 sinðo1t=2ÞV ; we observe qualitatively different results corresponding to
the linear case of Fig. 4(c) in that there is no resonant phenomena.

In Figs. 5(d) and 5(e) which are the dynamic responses of the plate driven by voltages of
V ¼ 4:0 sinð0:95o1tÞV=8:0 sinð0:95o1tÞV and V ¼ 4:0 sinð1:05o1tÞV=8:0 sinð1:05o1tÞV ; respec-
tively, it is further observed that there are no large amplitude responses that were obtained by
linear analysis in Figs. 4(d) and 4(e). Fig. 5(f) shows the response of the plate driven by voltages of
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Fig. 3. Non-linear load–deflection relationship of the plate under uniformly distributed load.
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Fig. 4. Dynamic responses of the plate under harmonic driving voltage at different frequencies via linear plate theory.

(a) f ¼ 10 Hz; (b) f ¼ f1 ¼ 4:297� 105 Hz; (c) f ¼ f1=2; (d) f ¼ f1=2 � 0:95; (e) f ¼ f1=2� 1:05; (f) f ¼ f1=2� 3:0:
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Fig. 5. Dynamic responses of the plate under harmonic driving voltage at different frequencies via non-linear plate

theory. (a) f ¼ 10 Hz; (b) f ¼ f1 ¼ 4:297� 105 Hz; (c) f ¼ f1=2; (d) f ¼ f1=2� 0:95; (e) f ¼ f1=2� 1:05; (f) f ¼
f1=2� 3:0:
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V ¼ 4:0 sinð1:5o1tÞV=8:0 sinð1:5o1tÞV : Again, as in Figs. 5(a) and 5(b), it is observed here in Fig.
5(f) that the response amplitudes when using non-linear analysis are lower in comparison with
results of Fig. 4(f). Thus apart from resonant and near-resonant cases, linear plate analysis
generally over estimates the amplitude responses. These qualitative and quantitative differences
can be expected based on previous works on free and forced large deflection vibrations of thin
plates [4,9,10].

5.4. Influence of amplitude of the applied voltage

Fig. 6 illustrates the variation of the dynamic response of the plate at various harmonic voltage
amplitudes of 4.0, 8.0, 12.0 and 20:0 V at a frequency of 10 Hz: In Fig. 6(a), it can be seen that
when the voltage amplitude is low at 4:0 V; the response amplitude of the plate is relatively small
at 20 mm: As this response amplitude is within the applicability range of linear theory, it is not
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Fig. 6. Comparison of dynamic responses of the plate under harmonic driving voltages of different amplitudes.

(a) Dynamic response of the plate under voltage 4:0 sinð62:8tÞ; (b) 8:0 sinð62:8tÞ; (c) 12:0 sinð62:8tÞ; (d) 20:0 sinð62:8tÞ:
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surprising to find that both results from linear and non-linear plate theory are almost coincident.
As the voltage amplitude is increased to 8:0 V in Fig. 6(b), the non-linear response is about 50 mm
and the linear response is about 75 mm: However, as the response exceeds half the thickness of the
plate, linear plate theory is no longer reliable thus resulting in the differences in the response
amplitudes. As the voltage amplitude is further increased to 12.0 and 20:0 V (Figs. 6(c) and 6(d)),
the expected divergence of the linear and non-linear results are clearly observed.

5.5. Influence of plate thickness

The effect of variation of the plate thickness is examined here by varying the length-to-thickness
ða=hÞ ratio, Fig. 7. The driving voltage is 8:0 sinð62:8tÞ: When the plate is relatively thick with
a=h ¼ 10; i.e., h ¼ 100 mm; the response amplitude is around 15 mm: As this is within the
applicability range of linear plate theory, it is observed that both sets of results from linear and
non-linear plate theory show excellent agreement. When thickness is reduced to a=h ¼ 20; i.e.,
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Fig. 7. Dynamic responses of the plate at various length-to-thickness ratios. (a) a=h ¼ 10; (b) a=h ¼ 20; (c) a=h ¼ 30;
(d) a=h ¼ 40:
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h ¼ 50 mm; discrepancies are observed as linear plate theory begins to over predict the amplitude.
Further reduction in the thickness clearly exposes the inadequacy of linear plate theory for large
deformation prediction.

6. Conclusions

The non-linear dynamic analysis of an electrostatic micropump has been presented. Coupled
electro-mechanical effects are considered in the evaluation of the micropump where the BEM was
employed to solve the quasi 3-D Laplace equation governing the electrostatics. FSDT is used to
model the electrode membrane and geometric non-linearity was present due to the inclusion of
von Karman strains. The FEM was employed to discretize the governing equations which were
solved by Newton’s iteration method. Linear plate theory results were also generated for
comparison. Results showed that when using linear plate theory, trends for the 2-D linear plate
analysis were similar to that observed by Shi et al. [2] in a 1-D analysis for a microtweezer.
However, when corresponding results were generated using non-linear plate theory, results were
qualitatively and quantitatively different. Parametric studies with respect to the driving voltage
amplitude and plate thickness have been presented. All results point to the necessity for
consideration of geometric non-linearity in this application.

Appendix A. Nomenclature

a; b plate length and width
Aij extensional stiffness
Dij bending stiffness
E Young’s modulus
Fe force vector entry
h plate thickness
I0; I1; I2 mass moments of inertia
K

ab
ij stiffness matrix entry

M
ab
ij mass matrix entry

Mxx;Mxy;Myy moment resultants
nx; ny unit outward normal vectors
Nxx;Nxy;Nyy in-plane force resultants
p electrostatic load
q surface charge density
Qx;Qy transverse force resultants
u; v;w displacements in the x; y; z directions
u0; v0;w0 midplane displacements in the x; y; z directions
e dielectric constant
exx; eyy normal strains
gxy; gxz; gyz shear strains
f electrostatic potential
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fx;fy transverse normal rotations
u The Poisson ratio
Oe;Ge elemental surface area and boundary range
ce

i Lagrange interpolation functions
De displacement vector entry
F;C Newmark integration parameters

References

[1] S. Fatikow, U. Rembold, Microsystems Technology and Microrobotics, Springer, Berlin, Heidelberg, New York,

1997.

[2] F. Shi, P. Ramesh, S. Mukherjee, Dynamic analysis of micro-electro-mechanical systems, International Journal for

Numerical Methods in Engineering 39 (1996) 4119–4319.

[3] M. Kaltenbacher, H. Landes, R. Lerch, F. Lindinger, A finite-element/boundary-element method for the

simulation of coupled electrostatic-mechanical systems, Journal de Physique III 7 (1997) 1975–1982.

[4] W. Han, M. Petyt, Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical

finite element method—I: the fundamental mode of isotropic plates, Computers and Structures 63 (1997) 295–308.

[5] Z.Q. Cheng, S. Kitipornchai, Exact bending solution of inhomogeneous plates from homogeneous thin-plate

deflection, American Institute of Aeronautics and Astronautics Journal 38 (2000) 1289–1291.

[6] P.C. Dumir, S. Joshi, G.P. Dube, Geometrically nonlinear axisymmetric analysis of thick laminated annular plate

using FSDT, Composites Part B—Engineering 32 (2001) 1–10.

[7] J.N. Reddy, Mechanics of Laminated Composite Plates—Theory and Analysis, CRC Press, Boca Raton, New York,

London, Tokyo, 1997.

[8] J.D. Jackson, Classical Electrodynamics, 2nd Edition, Wiley, Singapore, 1975.

[9] M. Chuh Mei, D.U. Kamolphan, A finite element method for nonlinear forced vibrations of rectangular plates,

American Institute of Aeronautics and Astronautics Journal 23 (1985) 1104–1110.

[10] R. Benamar, M.M.K. Bennouna, The effects of large vibration amplitudes on the mode shapes and natural

frequencies of thin elastic structures, Part III: fully clamped rectangular isotropic plates-measurements of the mode

shape amplitude dependence and the spatial distribution of harmonic distortion, Journal of Sound and Vibration

175 (1994) 377–395.

ARTICLE IN PRESS

T.Y. Ng et al. / Journal of Sound and Vibration 273 (2004) 989–10061006


	A coupled field study on the non-linear dynamic characteristics of an electrostatic micropump
	Introduction
	Dynamic FEM plate model for the micropump based on FSDT
	Charge density and electrostatic force
	Solution of dynamical equations
	Simulation results
	Non-linear load-deflection relationship
	Effects of driving frequency-linear plate analysis
	Effects of driving frequency-non-linear plate analysis
	Influence of amplitude of the applied voltage
	Influence of plate thickness

	Conclusions
	Nomenclature
	References


